Abstract
Introduction: Osteoarthritis is a rheumatic disease and may be related to aging. The main joints affected are those that normally receive more stress over the years, such as the knees. Among the recommended non-pharmacological treatments for individuals with knee osteoarthritis (KOA) is the practice of exercises. Studies have suggested whole body vibration exercise (WBVE) as a non-pharmacological intervention for KOA individuals. Materials and methods: This review gathered studies involving WBVE and KOA individuals to verify the importance of this intervention to the management of KOA. Nine works were selected. Results: The protocols of all studies were analysed and the findings about the benefits of WBVE in KOA individuals have been fairly consistent. It was observed that, in general, these analysed papers reported a reduction of pain levels and an increase in functionality on the KOA individuals. Conclusion: WBVE can be used as a safe, feasible, effective, and inexpensive tool in the rehabilitation of KOA individuals.

Keywords: Knee osteoarthritis; Mechanical vibration; Rehabilitation; Exercise.
Introduction

Whole body vibration exercise (WBVE) induces specific responses in the body that may potentially be used for therapeutic purposes. It is produced by mechanical vibrations generated in a oscillating/vibratory platform (OVP). These mechanical vibrations are defined as a deterministic sinusoidal oscillatory motion that is transferred to the body of the individual that is in contact with the base of the functioning OVP. There are two main types of OVP: side-to-side alternating and vertical (synchronic and triplanar).

Biomechanical parameters, such as working time interspersed with rest time, frequency (f), peak-to-peak displacement (D), amplitude, and peak acceleration (aPeak), as well as the positioning of the individual and the type of OVP, are fundamental for the elaboration of a safe and useful protocol and should be considered in the elaboration of WBVE protocols.

WBVE was found beneficial for muscle power and balance and beneficial for the elderly, as demonstrated by studies that involving WBVE and degenerative diseases.

According to the United Nations, the proportion of people aged 60 and over should double between 2007 and 2050, and the current number should more than triple, reaching to two billion people by 2050. The increase of life expectancy has an impact on the economies and healthcare of countries. In consequence, the use of drugs for management of symptoms and diseases common to aging is also increasing, along with costs for the patient and for the healthcare system.

The knee joint is considered one of the most complex ones of the human body due to, besides the flexion and extension, its movement having a rotational component. Its bony structures are patella, femoral condyles, and tibial plateaus. There are also extra-articular structures that support and influence the knee joint (synovium, capsule, ligaments and musculotendinous units). These components move harmoniously, allowing the joint movements (flexion, extension, internal rotation, and external rotation).

The compromising of the knee joint can lead to osteoarthritis (OA).

Osteoarthritis is a rheumatic disease and may be related to aging. It is uncommon before 40 and more frequent after 60 years of age. According to the World Health Organization (WHO), OA is the most prevalent joint disease in the world. OA is one of the ten most disabling diseases in developed countries and about 25% of individuals with OA cannot perform their main daily activities unaided (ADL) due to functional disability. According to WHO, it is estimated that 9.6% of men and 18.0% of women over 60 years of age have symptomatic OA and that 80% of that population have movement limitations, but the onset can occur as early as at 40 years of age. The main joints affected are those that normally receive more stress over the years, such as the knees.

The combination of cellular alteration with biomechanical tension causes a molecular derangement of the joint tissues, followed by anatomical and/or physiological disorders. In consequence, remodeling of subchondral bone and bone neoformation in the form of osteophytes, development of medullary lesions,
changes in the synovial membrane, joint capsule, ligaments, and periarticular muscles are expected. Meniscal lesions, extrusion, muscle and ligament imbalance may also be present. In this way, symptoms evolve with pain, stiffness, and joint instability, leading to loss of joint function to various degrees. Joint pain is the main cause of the limitations of daily activities and is often the biggest complaint reported in clinical care.

Osteoarthritis of the knee

Knee osteoarthritis (KOA) can affect one or both sides of the body. Its main feature is joint degeneration with progressive changes in hyaline cartilage. There is no single cause for its onset, and although the causes of KOA are still unclear, a multifactorial condition seems to be present, which can be primary (idiopathic), occurring by genetic influence, metabolic disorders, hormonal disorders, age, and by the participation of inflammatory cytokines. It may also be secondary, caused by joint wear due to external factors.

According to the Sociedade Brasileira de Reumatologia (SBR), the joint can be damaged by biomechanical stresses. This occurs in repetitive activities that exceed the protection capacity of the joint. Thus, the cartilage receives excessive forces that it is not ready to receive. There are occupational and sports activities that can lead to joint damage due to repetitive use of the joints. In these cases, KOA may appear early.

Muscular strength is essential for the health and physiological function of the organism. Muscles have a strong relationship with joint stability, locomotion, and performing everyday tasks such as going up and down stairs or sitting and getting up from a chair. In addition to muscle strength, muscle power plays an important role, since the restoration of balance normally depends on the rapid action of lower limb musculature, precisely the most affected by KOA and by the aging process in general.

Loss of muscle strength can reduce the individual’s resistance for performing their daily tasks. This functional decline can be aggravated by aging and/or sedentary lifestyle, resulting in greater muscle weakness and fatigue. Both the aging process and the sedentary lifestyle can be causes of KOA. It can be emphasized that with age there is a decrease in the elasticity of the tissue due to the reduction of the number of sarcomeres in parallel with hypotrophy of the type II muscle fibers (rapid conduction), increase of the fatty tissue and presence of random collagen bonds, thus impairing the functional motor units. With this, there is a musculoskeletal imbalance placing the joint in situations of mechanical overload. Thus, it is possible to correlate the joint instability of KOA with the physiological process of aging.

Individuals who have muscle weakness that can lead to compromised joints (KOA - valgus or varus) and who engage in inadequate or poorly planned exercises can overload the lower limbs and accelerate KOA development. Therefore, a thorough evaluation is necessary to define an intervention without joint overload in order to reduce pain and strengthen the periarticular muscles, decreasing the need of medication. When there is joint instability, exercise is essential for strengthening the muscles, and it is an integral part of the treatment of KOA. Squats may be effective for lower limb muscle development by increasing muscle activity progressively as the knees flex. However, excessive patellofemoral forces may contribute to knee injuries such as chondromalacia and KOA itself.

There is still no cure for KOA, but there is consensus to suggest the best treatment options. According to the American College of Rheumatology (ACR) and the Osteoarthritis Research Society International (OARSI), the recommendation is the combination of pharmacological and non-pharmacological treatment, such as exercise, with the aim of reducing pain and increasing functional capacity of the knee. When this goal is not achieved, surgical procedure is suggested. Symptoms associated with KOA lead to disabilities that may hamper ADL, including those related to occupational tasks. For health professionals, clinical interventions aimed at maintaining or improving the independence and autonomy of the individual with some type of limitation are important to the achievement of the best quality of life. Age-related or disease-related to muscle weakness may affect the lower extremities, compromising the performance for walking, maintaining balance, climbing stairs, lifting and moving objects, getting up from a chair, bed or floor, cleaning the house, bathing or dressing, which are activities affected by the senile KOA. These limitations, together with joint pain, leads the different levels of disability in KOA patients, which are often responsible for the low adherence to the treatment, further damaging their physical performance.

KOA individuals also present reduced muscle
strength, especially the quadriceps, which may or may not be associated with muscle atrophy, pain, and edema. This factor contributes to a decrease in functional independence in ADL, affecting the individual's quality of life.27

Among the non-pharmacological treatments recommended is the practice of aerobic and/or resistant activities associated with weight loss.26 One of the aims of the exercise is to increase muscle strength and kinesthesia of the lower limbs to stabilize or delay the process of articular cartilage degradation.20 However, excessive joint load may lead to aggravation of the disease with a greater inflammatory response, joint pain and edema.30 Adherence to exercise needs to be stimulated in the KOA population because, if exercises are not carefully prescribed, pain and discomfort may arise or exacerbate during ADL, which can lead to frustration, causing the individual to give up the treatment.9,31 The limitations in functionality in KOA individuals often prevent them from performing or maintaining a therapeutic intervention. For all these reasons, the WBVE has been suggested as an option of physical exercise for KOA individuals.4,32–34

Studies have reported the benefits of WBVE in subjects with KOA, such as pain reduction, quadriceps muscle strengthening, and balance improvement,4,35,36 suggesting WBVE as a non-pharmacological intervention for this population.

Whole body vibration exercise on the management of KOA individuals

There are studies that describe the benefits of WBVE in KOA individuals, as shown in Table 1. However, since there are no standard WBVE protocols, further investigation is necessary to establish optimal protocols.

Discussion

Trans et al.37 evaluated the maximal voluntary muscle strength of hamstrings and the quadriceps muscles by isokinetic dynamometry; proprioception with threshold for detection of passive movement; functionality, pain, and stiffness with Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and level of pain with visual analog scale (VAS). This study had three groups (WBVE on a stable platform, WBVE on a balance board, and control group) and an increase in muscle performance was observed due to WBVE.

Avelar et al.4 suggested that the addition of WBVE to squat training may represent a feasible and effective way of improving self perception of stiffness and physical function, mobility, and muscle condition in older adults with KOA. For this work, they used Berg Balance Scale (BBS), Timed Up and Go Test (TUG), Chair Stand Test (CST), 6-Minute Walk Test (6MWT), and WOMAC.

Salmon et al.34 have shown that only one session can improve the functionality (step test) 5 minutes after WBVE and a moderate correlation was found between the VAS scores and the time to complete the step test. Simão et al.33 have shown, in the WBVE group compared to the control group, a significant reduction of the plasma concentrations of surface TNF-α receptors 1 and 2 (sTNFR1 and sTNFR2), a significant increase in the self-reported pain (WOMAC), balance (BBS), and gait performance (6MWT).

Park et al.35 have shown a reduction of the pain level (Numeric Rating Scale - NRS) after WBVE comparing with control group and 2 months after the intervention. The study showed improvements of isometric torque of both knee extensors. However, as for the isokinetic torque of knee extensors, both groups showed improvements only in the right side.

Wang et al.38 performed the comparison between quadriceps resistance exercise and WBVE + quadriceps resistance exercise. Clinical assessments of outcomes included evaluation of pain level (VAS), balance and mobility (TUG), physical function (WOMAC), functional performance (6MWT), active knee flexion and extension of the affected knee joint (goniometer), knee flexors and extensors strength (hand-held dynamometer), biomarkers indicating severity of joint and cartilage damage (serum cartilage oligomeric matrix protein - sCOMP and urinary Crosslinked C-telopeptides of Type II collagen - uCTX-II), daily activities (Lequesne index), and quality of life (Medical Outcomes Short Form 36 - SF-36) at baseline, 2, 4, 16 and 24 weeks. The results showed a significantly improvement in VAS at 4 weeks, in VAS, 6MWT, WOMAC pain, and WOMAC physical function at 16 weeks, and in all primary outcomes at 24 weeks.

Wang et al.6 have evaluated the pain level (VAS), physical function (WOMAC and TUG) and gait (6MWT and 3D gait analysis) at baseline, 12 and 16 weeks. The results showed that WBVE associated with quadriceps exercise improved physical function at 12 weeks compared with baseline values.

Bokaeian et al.39 have shown that the combination of WBV and strengthening exercise was significantly more effective in improving functional activity tests (2...
min walk test - 2MWT, timed 50 foot walk test - 50FWT and TUG) than the strengthening exercise alone.

Neto et al.40 described that KOA participants treated with WBVE or in a combined intervention (WBVE and auriculotherapy) decreased of the level of pain (VAS) in the acute and cumulative effects, but the range of the movement (knee’s flexion) was not altered in the participants of all groups.

Conclusion

Although the studies had different WBVE protocols and have evaluated several outcomes, it is observed, in general, a reduction of pain level and an increase of the functionality in KOA individuals. We can conclude that WBVE can be used as a safe, feasible, effective and inexpensive tool in the rehabilitation of KOA individuals.

Conflict of interest

The authors declare that there is not financial conflict of interest (political, personal, religious, ideological, academic, intellectual, commercial, or any other) in relation to this manuscript.

Acknowledgments

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)/Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

| Table 1. Parameters used in studies about the effect of whole body vibration exercise in individuals with knee osteoarthritis |
|---|---|---|---|
| Study | Size of the simple/Age/Sex | Oscillating/vibratory platform | Frequency/D or A | Duration of the intervention (weeks)/number of session/week |
| Trans et al.17 | n=52 mean age: 60.4±9.6 female | side-to-side alternating | F= 25 to 30 Hz D= not informed | 8 weeks twice a week |
| Avelar et al.4 | n=23 age >60 male and female | Vertical | F= 35 to 40 Hz D= 4mm | 12 weeks three times a week |
| Salmon et al.34 | n=17 age: not informed sex: not informed | Vertical | F= 35 Hz D= 4-6 mm | 1 session |
| Simão et al.33 | n=32 age >60 male and female | Vertical | F= 35 to 40 Hz D= 4mm | 12 weeks three times a week |
| Park et al.3 | n=22 age >50 female | Vertical | F= 12 to 14 Hz D= 2.5 to 5 mm | 8 weeks three times a week |
| Wang et al.18 | n=49 age: 40 to 65 male and female | Vertical | F= 35 Hz D= 4-6 mm | 24 weeks five times a week |
| Wang et al.6 | n=49 age: 40 to 80 male and female | Vertical | F= 35 Hz D= 4-6 mm | 12 weeks five times a week |
| Bokaeian et al.39 | n=28 age: 35 to 76 male and female | Vertical | F= 25 to 30 Hz D= 2 mm | 8 weeks 24 sessions three times a week |
| Neto et al.40 | n=78 age >40 male and female | side-to-side alternating | F= 5 to 14 Hz D= 2.5 to 7.5 mm | 5 weeks 10 sessions twice a week |

F - frequency, D - peak-to-peak displacement, A – amplitude
References

